Search results for "Blow up"

showing 5 items of 5 documents

Etude numérique d'équations aux dérivées partielles non linéaires et dispersives

2011

Numerical analysis becomes a powerful resource in the study of partial differential equations (PDEs), allowing to illustrate existing theorems and find conjectures. By using sophisticated methods, questions which seem inaccessible before, like rapid oscillations or blow-up of solutions can be addressed in an approached way. Rapid oscillations in solutions are observed in dispersive PDEs without dissipation where solutions of the corresponding PDEs without dispersion present shocks. To solve numerically these oscillations, the use of efficient methods without using artificial numerical dissipation is necessary, in particular in the study of PDEs in some dimensions, done in this work. As stud…

Davey-Stewartson systems[ MATH.MATH-GM ] Mathematics [math]/General Mathematics [math.GM]equations dispersivesdispersive shocksexponential time-differencing[MATH.MATH-GM]Mathematics [math]/General Mathematics [math.GM][MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]spectral methodschocs dispersifsnumerical methodsdispersive equationsNo english keywordssplit stepschemas de decomposition d'operateursmethodes spectrales[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]Kadomtsev-Petviashvili equationintegrating factor methodparallel computing[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]Pas de mot clé en français[MATH.MATH-GM] Mathematics [math]/General Mathematics [math.GM]methodes numeriquesblow upequation de Kadomtsev-PetviashviliIntegrateurs exponentielssystemes de Davey-Stewartsoncalcul parallele
researchProduct

Spectral analysis of the Neumann-Poincaré operator and characterization of the stress concentration in anti-plane elasticity

2012

When holes or hard elastic inclusions are closely located, stress which is the gradient of the solution to the anti-plane elasticity equation can be arbitrarily large as the distance between two inclusions tends to zero. It is important to precisely characterize the blow-up of the gradient of such an equation. In this paper we show that the blow-up of the gradient can be characterized by a singular function defined by the single layer potential of an eigenfunction corresponding to the eigenvalue 1/2 of a Neumann–Poincare type operator defined on the boundaries of the inclusions. By comparing the singular function with the one corresponding to two disks osculating to the inclusions, we quant…

Gradient blow upMechanical Engineering010102 general mathematicsLinear elasticityMathematical analysisEigenfunction01 natural sciencesNeumann–Poincaré operator010101 applied mathematicsanti-plane elasticityMathematics (miscellaneous)Harmonic functionSingular functionSettore MAT/05 - Analisi Matematica0101 mathematicsElasticity (economics)AnalysisEigenvalues and eigenvectorsMathematicsOsculating circle
researchProduct

Blown-up toric surfaces with non-polyhedral effective cone

2020

We construct examples of projective toric surfaces whose blow-up at a general point has a non-polyhedral pseudo-effective cone, both in characteristic $0$ and in every prime characteristic $p$. As a consequence, we prove that the pseudo-effective cone of the Grothendieck-Knudsen moduli space $\overline M_{0,n}$ of stable rational curves is not polyhedral for $n\geq 10$ in characteristic $0$ and in characteristic $p$, for all primes $p$. Many of these toric surfaces are related to a very interesting class of arithmetic threefolds that we call arithmetic elliptic pairs of infinite order. Their analysis in characteristic $p$ relies on tools of arithmetic geometry and Galois representations in …

Mathematics - Algebraic GeometryMathematics::Algebraic GeometryMathematics - Number TheoryEffective cones toric surfaces blow up moduli space.Applied MathematicsGeneral MathematicsFOS: MathematicsSettore MAT/03 - GeometriaNumber Theory (math.NT)Algebraic Geometry (math.AG)14C20 14M25 14E30 14H10 14H52
researchProduct

Spectral theory of a Neumann-Poincare-type operator and analysis of cloaking due to anomalous localized resonance

2011

The aim of this paper is to give a mathematical justification of cloaking due to anomalous localized resonance (CALR). We consider the dielectric problem with a source term in a structure with a layer of plasmonic material. Using layer potentials and symmetrization techniques, we give a necessary and sufficient condition on the fixed source term for electromagnetic power dissipation to blow up as the loss parameter of the plasmonic material goes to zero. This condition is written in terms of the Newtonian potential of the source term. In the case of concentric disks, we make the condition even more explicit. Using the condition, we are able to show that for any source supported outside a cr…

PermittivitySpectral theoryShell (structure)Physics::OpticsFOS: Physical sciencesCloakingDielectricBlow up01 natural sciencesResonance (particle physics)Mathematics (miscellaneous)Mathematics - Analysis of PDEsSettore MAT/05 - Analisi MatematicaQuantum mechanicsFOS: Mathematics0101 mathematicsPhysicsCondensed Matter - Materials ScienceMechanical EngineeringOperator (physics)010102 general mathematicsIsotropyMaterials Science (cond-mat.mtrl-sci)Partial Differential EquationsNeumann–Poincaré operator010101 applied mathematicsAnalysisAnalysis of PDEs (math.AP)Optics (physics.optics)Physics - Optics
researchProduct

Singularity formation and separation phenomena in boundary layer theory

2009

In this paper we review some results concerning the behaviour of the incompressible Navier–Stokes solutions in the zero viscosity limit. Most of the emphasis is put on the phenomena occurring in the boundary layer created when the no-slip condition is imposed. Numerical simulations are used to explore the limits of the theory. We also consider the case of 2D vortex layers, i.e. flows with internal layers in the form of a rapid variation, across a curve, of the tangential velocity.

Prandtl's equations Separation Spectral Methods Complex singularities Blow up time Regularizing viscosityBoundary layerClassical mechanicsSingularityDynamical systems theoryGeometric mechanicsDifferential equationComputational mechanicsFluid mechanicsSettore MAT/07 - Fisica MatematicaBoundary element methodMathematicsMathematical physics
researchProduct